(x^4+4x^3+16x-35)/(x+5)

4 min read Jun 17, 2024
(x^4+4x^3+16x-35)/(x+5)

Polynomial Long Division: (x^4 + 4x^3 + 16x - 35) / (x + 5)

This article will demonstrate how to perform polynomial long division to simplify the expression (x^4 + 4x^3 + 16x - 35) / (x + 5).

Step 1: Set Up the Division

Begin by setting up the long division problem:

             ________
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35

Notice that we have included a placeholder term (0x^2) for the missing x^2 term in the dividend.

Step 2: Divide the Leading Terms

Divide the leading term of the dividend (x^4) by the leading term of the divisor (x). This gives us x^3:

             x^3       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35

Step 3: Multiply the Quotient by the Divisor

Multiply the quotient (x^3) by the divisor (x + 5):

             x^3       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35
       -(x^4 + 5x^3)

Step 4: Subtract and Bring Down the Next Term

Subtract the result from the dividend and bring down the next term (0x^2):

             x^3       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35
       -(x^4 + 5x^3)
             -x^3 + 0x^2 

Step 5: Repeat Steps 2-4

Repeat steps 2-4 until the degree of the remainder is less than the degree of the divisor.

Divide the leading term of the new dividend (-x^3) by the leading term of the divisor (x) to get -x^2:

             x^3 - x^2       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35
       -(x^4 + 5x^3)
             -x^3 + 0x^2 
             -(-x^3 - 5x^2)

Subtract and bring down the next term (16x):

             x^3 - x^2       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35
       -(x^4 + 5x^3)
             -x^3 + 0x^2 
             -(-x^3 - 5x^2)
                  5x^2 + 16x 

Repeat the process:

             x^3 - x^2 + 5x       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35
       -(x^4 + 5x^3)
             -x^3 + 0x^2 
             -(-x^3 - 5x^2)
                  5x^2 + 16x 
                  -(5x^2 + 25x)
                          -9x - 35

Finally:

             x^3 - x^2 + 5x - 9       
x + 5 | x^4 + 4x^3 + 0x^2 + 16x - 35
       -(x^4 + 5x^3)
             -x^3 + 0x^2 
             -(-x^3 - 5x^2)
                  5x^2 + 16x 
                  -(5x^2 + 25x)
                          -9x - 35
                          -(-9x - 45)
                                  10

Solution

The quotient is x^3 - x^2 + 5x - 9 and the remainder is 10. Therefore, the simplified expression can be written as:

(x^4 + 4x^3 + 16x - 35) / (x + 5) = x^3 - x^2 + 5x - 9 + 10/(x+5)

Related Post